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A fundamental error relation inherent in the Gauss divergence 
theorem provided the basis for studying the truncation error of the finite 
volume method with cell center formulation for a model steady convec- 
tive equation. The consistency of the classical first- and second-order 
upwind schemes are proved to be seriously dependent on the grid dis- 
tribution. If the simple nature of the finite volume method is retained, it 
is found that a consistent scheme for convective terms can not avoid 
the dissipation due to grid nonuniformity. The geometrical interpreta- 
tion of the diffusive terms such as V2@ are undertaken. Classical finite 
volume methods, which average an undefined r#r from its neighbouring 
nodes, are shown to introduce false fluxes whenever grid nonuni- 
formity is present. A simple modification is proposed to cancel the 
false fluxes. Two test cases for the Laplace equation illustrate the 
applicability of the proposed scheme. However, even with this modified 
scheme, the consistency problem of the diffusion term is found to be 
seriously dependent on the grid uniformity. 0 1992 Academic Press. Inc. 

1. INTRODUCTION 

The finite volume method for partial differential equa- 
tions is widely used in scientific and engineering applica- 
tions, since they are relevant to physical problems and can 
avoid geometrical singularities. Specifically, much attention 
was directed to the following convective equations: Burgers 
equation, Euler equations, and the Navier-Stokes equa- 
tions [l]. 

Before one can prove the convergence of numerical 
methods for a certain differential equation, the consistency 
conditions should have been previously met by virtue of 
Lax’s equivalence principle [2]. Consequently, truncation 
error analysis is extensively studied. Before 1968 [3-53, 
research related to nonuniform grid systems centered on 
one-dimensional analyses. Several subsequent papers [S-S] 
focused on the properties of the truncation error on non- 
uniform grids. Although all of them were one-dimensional 
analyses, they theoretically built in theory for the multiple- 
dimensional framework in which we now work. 

In the mid 1980s different opinions between Hirt and 
Ramshaw [9] and Roache [lo] raised the following ques- 

tion: should the truncation error analysis be performed on 
the physical domain or on the computational domain [ 1 1 ]? 
So far, the existing approaches do not give a definite answer. 
As in previous works [3-81, Hoffman [ 1 l] prefers neither 
the physical nor the computational domain. Thompson and 
his colleagues [ 12,131 and Lee and Tuesi [ 141 performed 
their analyses on the computational domain. However, 
Veuillot and Viviand [15], Pike [16], Turkel [17, 181, 
Turkel and his colleagues [19], Roe [20], Giles [21], 
Wang and Widhopf [22], Radespiel and Swanson [23], 
and Morton and Paisley [24] all used physical domain 
analyses. 

In fact, the key to Hirt, Ramshaw, and Roache’s question 
already existed in earlier works [6-8, 111. For a one-dimen- 
sional approach, consider the following derivatives with 
central difference approximation [6-8, 111, 

x [X)+1-2Xj+Xj-,]+O(AXj), (1) 

where 4 and r are variables, 4, = &j/ax, . . . . and ( ), denotes 
variable at jth spatial nodal point, and Axj= 

o.5(x~ + 1 - xj- 1 9 ) etc. Similar relations can be written 
without difficulty for a one-sided differencing scheme. By 
discrete mapping from { Xj} to { tj}, Eq. (1) is rewritten as 

-&&cx,+, -2Xj+~jp,] +O(Ax,f) 
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x [x,+I-2xj+Xj-,]+O(Axf) 

in which ( )< = a( )/a<. Clearly, if 

[Xj+1-2xj+Xj-,]wO(Ax,2) 

then the following reciprocal relations exist: 

(2) 

(3) 

C(‘d.Y).X] j + o(AXy) = [ (i4fr’)‘]j + O(Atf). (4) 

In other words, the error analysis on both the computa- 
tional and the physical domain will be equivalent, if Eq. (3) 
is valid. Therefore, before a reciprocal relation like Eq. (4) 
has been proved, a second-order scheme on the physical 
domain cannot necessarily be taken to be second order on 
the computational domain and vice versa. This conclusion 
applies to both the finite difference and the finite volume 
methods. 

In spite of its increasing importance, additional work 
done on the behavior of the finite volume method on non- 
uniform mesh did not surface until 1985. Turkel and his 
coworkers [ 17-191 did the first systematic study of trunca- 
tion error for the finite volume method on nonuniform 
meshes. The analysis was done on the physical rather than 
the computational domain, due to the former’s relatively 
straightforward condition of derivation. Turkel, using the 
cell center formulation, found that many schemes reduce to 
first-order accuracy and would be inconsistent on non- 
smooth grid systems. Roe [20] performed the analysis for 
cell vertex formulation and constructed a scheme that is 
insensitive to grid stretching. Morton and Paisley [24] 
extended Turkel’s idea to solve the Euler equations. They 
compared cell center and cell vertex formulations and found 
that the latter is again less sensitive with respect to grid 
distortion. Radespiel and Swanson [23] also employed two 
formulations for the Navier-Stokes equations and found 
that these did not significantly differ. Wang and Widhopf 
[22] successfully extended Turkel’s idea on the physical 
domain to construct their TVD scheme. 

Note that truncation error analysis is only a local 
phenomenon.’ A large local truncation error does not 
necessarily induce a significantly large solution error, as has 
been proven numerically by Flores et al. [25] and Lindquist 

’ The authors are grateful to one of the referees who pointed out this fact. 

and Giles [26]. By assuming that the solution error is of the 
same order as the truncation error and using spectral 
analysis, Giles [21] showed that high order accuracy can be 
achieved by careful numerical smoothing. Recently, Siili 
[27-291 performed a series of studies about the global 
stability, accuracy, and convergence of the finite volume 
method for both linear hyperbolic equations and the 
Poisson equation on distorted meshes. He found the distor- 
tion significantly affects both stability and accuracy. 
Moreover, he derived an estimation of the solution error 
which is principally determined by the truncation error. 

Since the study of the truncation error of the finite volume 
method is relatively new, the phenomena has not been 
studied thoroughly. To the author’s knowledge, error of the 
line integral part of the Gauss divergence theorem has not 
yet been fully examined. This paper will study the effect of 
this discretization on the error of a finite volume method 
with cell center formulation for a convective equation. 
The extension to that of cell vertex formulation is 
straightforward. For convenience, the governing equation 
will focus on a two-dimensional model convective equation. 
Note that the present truncation error analysis is only 
suitable for smooth solutions and that it may become 
meaningless in regions of discontinuity. Besides the above 
reciprocal relations of Eq. (4), the question of the existence 
of other important criteria for the finite volume method will 
be examined. The present analysis will focus on the physical 
domain, since condition (3) and the governing equation 
originated thereon. 

Although all the symbols are properly explained in the 
text, for the sake of clarity three types of subscripts are 
herewith explicated: 

1. ( 1x3 where “x” can be single or multiple letters of 
“x, y” or “r,” denoting a derivative with respect to the 
subscript. 

2. ( I,> where “a” can be a single or double letter (or 
number) other than x, y, 5. This is a variable at the nodal 
point denoted by the subscript. 

3. A( Lb? where “a” and “6” are none of “x, y, 5.” This 
symbol denotes a difference measured from point “a” to 
point “b”. If either “a” or “b” is composed of double letters, 
a dashed line is added to make the expression clear. For 
example, Ax, ~ ww = x ww - x,. 

In Section 2, the fundamental lemma of discretizing the 
line integral part of the Gauss divergence theorem will be 
considered first. Errors of the first- and second-order 
upwind schemes will also be discussed on uniform and 
nonuniform grid systems using this lemma. A systematic 
analysis of the diffusive term will be performed, and a 
method to deal with it will be proposed. In Section 3, live 
schemes, including the proposed one, will be applied to test 
two problems governed by the Laplace equation. 
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2. ANALYSIS 

The fundamental theorem for the finite volume method is 
the Gauss divergence theorem [30], which is defined on 
continuous space. Before we go into more detail, the error 
behavior induced by the discretization of the theorem’s line 
integral will be studied first. This is described in a lemma on 
which all the subsequent theoretical developments of the 
present analysis will be based. 

2.1. A Fundamental Lemma of Truncation Error 

Consider a polygonal control volume 1234 . . . 1 as shown 
in Fig. la, where the circle denotes the centroid of the 
control volume, and the star denotes the center of each 
side of the control surface. The Gauss divergence theorem 
[30] is 

Therefore, the problem in defining the truncation error 
explicitly was an open question for many years. To over- 
come this difficulty, Turkel [ 171 represented the integral by 
a point value (V . V), to obtain 

I V.VdA = C(U,)P+ (~.,blA + W*) 
A 

WA*)= C(u,,,)p+ (~,,,,),I s, (x-2xp’2 dA + ..., 
(7) 

where the subscript “P” denotes the location at the centroid 
of “A”. The second-order terms u,,, . . . disappear because of 
the definition of centroid xP, y, of a cell. Note that this 
term, U(A*) obtained from Turkel’s approximation, 
corresponds to the error of Newton-Cotes’ integration 
formula [ 3 11. 

j” V.VdA=fh’.ds (5) 
A 

in which A is the area of the control volume and s is the arc 
length along the control surface, so that 

V = ui + uj, (6) 

where i, j are unit vectors in directions x, y, respectively, and 
U, u may be either corresponding velocity components or 
derivatives of functions. 

With the help of Eq. (7) the RHS discretizing error of 
Eq. (5) can be found. Once the approximation of the line 
integral of Eq. (5) is determined, the difference between its 
Taylor series expansion (with respect to central point “I”‘) 
and Eq. (7) can be found. This value is called the truncation 
error. For the sake of simplicity, only the errors up to 
second order will be considered in this study. 

Assume that a finite volume method approximates the 
RHS of Eq. (5) by 

Discrete 
The finite volume method evaluates the RHS of Eq. (5) 

numerically to approximate the average of V. V within the 
area “A”. Note that U, u of the LHS of Eq. (5) are cell- 
averaged quantities and are not known at specific points. 

- v,, Ax,, + u, Ay,, - v,. Ax,, 

+ ..., (8) 

e 
2 

Y 

L X 

FIG. 1. (a) The control volume on the physical domain. (b) The grid arrangement on the physical domain. 
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where subscript “a” indicates the center of boundary n, 
“h” the center of %, etc., as shown in Fig. la, while 
dy,, = y, - y, and dx,, = x2 -x1, etc. Note that the point 
values u,, v,, . . . are considered as approximations to the 
mean values on corresponding cell boundaries. The error of 
Eq. (8) which does not include the error of evaluating 
u, v,, . ..) can be expressed as 

AY,* (ux.xL Ax* Error=- - 
[ 12 2 ‘* 

+ (%yL AXI, AYl2 + 
0, dy2 

2 12 1 AXI, (VA AX2 -- - 
[ 12 2 I2 

(~,~,)U 
+ (v,), Ax,* dYl2 + - 2 AY:2 1 + . . . = @A 1.5). @a) 

Again, this error is the error of the Newton-Cotes open-end 
integration formula [31]. The terms u,, . . disappear 
because of the definition of the central point of a line 
segment. 

Now suppose that “u” and “v” at the centroid of every 
control volume are known, so that u,, v,, . . . should be 
approximated by nodal values such as U, = iuP - &U W (with 
the symbols shown in Fig. lb). After performing the Taylor 
series expansion with respect to points a, b, c, . . . . respec- 
tively, these approximations of u,, v,, . . . can be written as 

. . . . (9) 

where the terms multiplied by aiu’s and flia’s are the errors. 
The coefficients ajo, . . . are somewhat like Ax,,, . . . in the 
Taylor series expansion. a,, and PO0 are either zero or of the 
same order as alo, bib, respectively. 

In general, the finite volume method defined by Eq. (8) 
may include two errors: (1) the error of Eq. (8a), due to 
approximation of the line integral on cell boundaries, and 
(2), that of evaluating u,, v,, . . . . as shown in Eq. (9). For 
convenience, these errors are summarized in the following 
fundamental lemma. 

LEMMA. Let the approximations to u,, v,, .,, be expanded 
as in Eq. (9). Suppose the RHS of Eq. (5) is approximated by 
Eq. (8). Then the truncation error is 

Error = up(aoU Ay,, + aOh Ay,, + a,,. Ay,, + . . . ) 

+ (u,),C(ao, Axp, + ad A.Y,, 

+ (a0bAxpb+aldA~23 + ... 1 
+ (u,),C(ao, AY,, + s) AYU 

+ (aoh AyPh + aZh) AY*, + ... 1 

+ (u rr )P 

K 

+(I +xoa) 

+ al0 Ax,, + a 4 A~12 + -] 

+ . . 

- vABoa A-x,, + Bob Ax23 + Boc Ax,, + . . ) 

+ . . . (10) 

where the coefficients of the second and higher order 
derivatives include the terms of the integration error in 
Eq. (8a). Similarly, the error can also be expressed in terms 
of the order of Ax, Ay, 

Error = Ca,,u,+ aIo(u,r)p + a2u(u?,)p 

+ a3a(u,.y)p + a.&~,,.)~ + . ‘1 AY I2 

- CBOPP + Bh(U.x)P + BZU(V,~)P 

+ Mv,,)P + L,1(vr& + . . . 1 A-x,, 
+ . . 

+ Caou(u.Jp + alu(u.yr)p 

+ a2a(U,)p + . . 1 Axpu AY 12 
+ . . . (11) 

ProoJ: After substituting the expansions of Eq. (9) into 
Eq. (8), the result is expanded with respect to point “P.” 
Subsequently, by subtracting the resulting equation from 
Eq. (7 ), Eqs. ( 10) and ( 11) are obtained. Q.E.D. 

From the point of view of the order of the derivative, 
Eq. (10) indicates that the finite volume method amplifies 
the error. On the other hand, from the consistency point of 
view, the order of the error is equal to the order of the first 
nonzero error term in Eq. (11). 

The lemma indicates that the consistency between the dis- 
cretized line integral of Eq. (8) and the LHS of Eq. (5), 
significantly depends on the grid distribution and the 
approximating forms of u,, vu, . . . . Note that the midpoint 
integration rule for the convective term of the one-dimen- 
sional model equation, derived by Turkel and his coworkers 
[ 17-193, is in some sense similar to the present lemma. 

If the known values of u, v are located at points 1, 2, . . . 
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(see Fig. 1 b), the error will be reduced to the Newton-Cotes 
closed-end integration error [ 3 11, similar to Eq. (8a). This 
conclusion is consistent with the results of Roe [20] and 
Morton and Paisley [24], in that cell vertex formulation is 
better than the cell center formulation for the Euler equa- 
tions. However, the results of calculating the unsteady con- 
servation equations are often represented at centroids, so 
that proper interpolation should be made so as to find 
UI? u2, . . . of Fig. lb from U, vat these central points [32, 331. 
If the computational stability problem can be solved, such 
as in Reddy and Jacocks’ central difference scheme [34] 
and in Jameson and Mavriplis’ scheme [33] with artificial 
viscosity, this type of a finite volume method would be 
excellent for the Euler equations; otherwise one has to 
properly interpret the upwind scheme for the convective 
terms. Note that this type of finite volume method still has 
intrinsic artificial viscosity due to the integration error of 
Eq. (8a). 

As for the diffusive terms of the Navier-Stokes equations, 
U, v become derivatives, and the errors of Eq. (9) still exist. 
We will postpone discussion of this until Section 2.5. 

Another possible approach, reminescent of the staggered 
grid scheme [35], places the known values of U, v at central 
points of line segments of control surfaces a, b, c, . . . of 
Fig. la or e, n, w, s, . . . of Fig. lb. In both cases, the errors are 
similar to those mentioned in the previous paragraph and 
the interpretation of the upwind scheme is relatively easy. 
The method for finding u,, u,, . . . from up, . . . . and the 
problems associated with the diffusive terms were solved in 
an analogous manner to the previous scheme. 

Without loss of generality, the rest of this study will focus 
on the quadrilateral control volume (see Fig. lb). Most of 
the results can be easily extended to a general polygonal 
control volume. For the sake of completeness, the uniform 
grid system is discussed first. 

2.2. Truncation Error on Uniform 
Quadrilateral Grid Systems 

In uniform quadrilateral mesh cases which are not 
restricted to rectangular grids, the symmetric character 
(Ax,, = -Ax,,, Ay,, = - Ay,, . . . ) plays an important role. 
It makes the order of accuracy of the closed loop integration 
of Eq. (10) equal to the order of accuracy of evaluating u,, 
V 0, ... of Eq. (9). It is interesting to note that while uniform 
meshes can only be constructed from either triangles, 
tetragonals, or hexagonals, those constructed from triangles 
[20] lack symmetric character. 

For simplicity, we will use the first-order upwind scheme 
to represent V for a uniform rectangular grid system and 
assume that u>O, v>O, so that U,=up, V,=vp, U,=uw, 
c = us, where the subscripts e, n, w, s denote the centers of 
corresponding control surfaces, and the subscripts P, W, S 

denote the centroids of corresponding control volumes as 
shown in Fig. lb. From the Taylor series expansions of U,, . . 
and by applying the fundamental lemma, the error of the 
closed loop integration of Eq. (5) becomes 

Error=Ax Ay [- ~(Ax (u,,),+Ay (v,),,)+ ...I. (12) 

Note that the error terms corresponding to all the lirst- 
order derivatives uX, uy , . . . vanish and the error of the 
Newton-Cotes integration of Eq. (8) is improved to be 
(Ax3 Ay/6)(u,,,),+ (Ax Ay3/6)(~YY,,,)p..., all due to the 
symmetric character of the rectangular grid system. 

On the other hand, if a nonuniform grid system is intro- 
duced, the symmetric character disappears and the coef- 
ficients cci, pi would be of order Ax, or Ay. As a consequence, 
the consistency problem on the physical domain may 
become large enough to pose a serious problem. This situa- 
tion will be discussed in more detail in the next section. 

2.3. The Model Convective-Diffusive Equation 

Consider the model convective-diffusive equation which 
can represent most of the characters in the Navier-Stokes 
equations. This equation is written in integral form for a 
general quadrilateral cell (see Fig. lb) and given below as 

4 
s 

@.dS=$ Vd.dS, 
S 

(13) 

where the LHS is the convective term; the RHS is the dif- 
fusive term; V is velocity vector; 4 may be U, v, temperature, 
concentration, or any other variable; S is the enclosed 
boundary of the control volume; and S includes its outward 
normal. 

2.4. The Determination of the Error of the Finite Volume 
Method for Convective Terms of the Model Equation 

The convective transport is modelled by the classical lirst- 
order upwind scheme, by assuming positive contravariant 
velocities at points e, n, w, and s. After obtaining an expres- 
sion comparable to Eq. (9), the error of the convective term 
will have become 

Error = C(&Llp [Ax,, Ay3, + Ax,, AY,, -A 1 

+ C(4u),lp CAY,, A~34 + AY,, AY,,I 

- C(4v)xl P [Ax,, Ax34 + Ax,, Ax,, 1 

- C(b),l~ CAY,, Ax34 + AYP, A-G + A 1 

+ ; C(4~Lrl~ C&v A~34 + Ax;, AY,, + . . .I 

+ . . . . (14) 



where Ax,,= xW- xp, . . . . and 

A = AY 12 Ax, + AY,, Axp, 

+ AY,, Ax,, + AY,, AXP, 

= -(Ax,,AY,+Ax,, AY, 

+ AXM AY,,,. + Ax,, AY,). 

Clearly, nonuniformity can introduce false fluxes which may 
in turn induce a problem of consistency. This result is 
analogous to those obtained by Turkel [ 181 and Pike [ 163 
in their analyses of one-dimensional systems. 

In uniform grid systems, it is well known that the first- 
order upwind scheme of the convective term introduces 
large artificial viscosity which is represented by second- 
order derivatives. In nonuniform grid systems, this artificial 
viscosity is also contributed to by grid nonuniformity and 
errors due to the Newton-Cotes integration. These errors 
are noted by “...” in coefficients of second-order derivatives, 
enclosed by [ ] of Eq. (14). 

By extending Turkel’s [IS] one-dimensional concept of 
consistency to the model equation, the criteria for the 
classicial first-order upwind scheme are 

Ax,, Ay,, + Ax,, Ay,, -A - O(A’.5) 

AY,wAY,, + AYPS AY,, - WA’.‘) 

Ax,, Ax,, + Ax,, Ax,, - O(A’.‘) 
(15) 

AY,, Ax,, + Ay,, Ax,, + A - O(A’.‘), 

where A < A,,,, and A,,, is normalized so that the area of 
the whole domain is O( 1). As in Eq. (3), these criteria are 
also the reciprocal criteria of the classical first-order upwind 
scheme. 

Turkel [ 17 J defines the quasi-uniformity conditions of 
mesh systems to be 

(AxMAx)i+ I = 1+ O(G) 

(AY Ii/( + I= 1+ 0(&h 
(16) 

where (Ax)~, (Ax)~, 1 can be: (1) two successive grid 
intervals, (2) two opposite grid sides, (3) volumes of two 
adjacent cells, or (4) angles of two adjacent cells. By 
properly interpreting these conditions, it can be shown 
that the quasi-uniformity conditions of Eq. (16) satisfy the 
criteria of Eq. (15). 

d2(Ax)/d<‘, d2(Ax)/dq2, d2(Ax)/(& dy), . . . 

- O(JA). (19) 

Next, we consider the classical second-order upwind 
scheme, (&), = 1[3(&), - (4~) W], . . . . which is defined on 
the computational domain. This approximation is generally 
of first-order accuracy except on uniform and auasi-uniform 

After comparing Eq. (18) with Eq. (19), it is evident that the 
error of the second-order upwind scheme will become 
smaller than that of the first-order upwind scheme, provided 
that the grid distribution is smooth enough. 

In order to determine if the second-order upwind scheme 
1 still takes precedence over the first, imagine a worst case 
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grid systems [16, 171. After obtaining the Taylor series 
expansion of the second-order upwind scheme, the coef- 
ficients C(~, pi and the error in the convective terms can be 
determined. The consistency problem will again be trivial if 
the following criteria are satisfied: 

$[-Ax ~w AY,, -Ax,, AY,, 

+ (3 Ax,, - Ax,- ww) AY,, 

+ (3 Ax,,-Ax,-,, ) Ay,, - 2A] N O(A ‘..“) 

&AY.,AY,,-AYPsAY,, 

+ (3 AY,,-AYP- ww) AY,, 

+ (3 AY,,- AY,-ss) AY,,I -WA’? 

&Ax,, Ax,2 - Axm Ax,, 

+ (3 Ax,,- Ax,- ww) Ax34 

+ (3 Ax,,- Ax p-m) hul- O(A’.5) 

&A~,wAxn-A~,dx,, 

+ (3 AY,,- AYP- ww) 4, 

+ (3 AY,,- Ay._.J Axdl + 2A] - O(A’.‘). (17) 

In addition to these conditions, for the scheme to be second- 
order accurate, the coefficients of the second-order 
derivatives (u,,.,)~, . . . must be of O(A’). Note that Turkel’s 
quasi-uniformity conditions of Eq. (16) also fulfill Eq. (17). 

Although Turkel’s quasi-uniformity conditions can be 
easily applied, they cannot provide enough information for 
comparison between the first- and second-order upwind 
schemes. In order to understand their difference, assuming 
that the grid is smooth enough, the Taylor series expansions 
for Eq. (15) and Eq. (17) must be performed on the com- 
putational domain. According to Fig. lb, the direction of 
32, 41 and 12, 43 are defined by 4: and ‘I, respectively. By 
taking A< = Aq = 1, it follows that Eq. (15) simplifies to 

d( Ax)/&, d( Ax)/& . . . - 0( fi) 

while Eq. (17) becomes 

(18) 
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scenario in which the grid system is stretched in the 
x-direction and is uniform in the y-direction, so that Ax,,, 
Ax p--ss= 0 and Ay,, = - Ay,,. The first equation in 
Eq. (15) then simplifies to 

IAx,,- Ax,,1 - WCAx,,12). (20) 

In a similar manner the first equation of Eq. (17) becomes 

I-2 Ax,- 0.5 Ax,,-.-Ax,,/ -O([Ax,,]‘). (21) 

Through application of the Taylor series expansion, it is 
relatively easy to obtain expressions similar to Eqs. (18) 
and (19). If the grid system deteriorates, the possibility of 
violating Eq. (21) is obviously larger than that of violating 
Eq. (20). In other words, the potential exists for the classical 
second-order scheme to introduce more false fluxes than the 
classical first-order upwind scheme, whenever the grid 
system is poor. 

From the above two examples, it is intuitive that higher 
order approximations to u,, u,, . . . should be considered on 
the physical rather than on the computational domain. A 
very high order scheme would be unnecessary, since the 
error on each side of the Newton-Cotes open-end integra- 
tion formulation is of second order as shown in Eq. (8a). 
Therefore, a second-order upwind approximation to u,, 
V e, ... seems more appropriate. For the case with positive 
contravariant velocity at boundary n, a strictly second- 
order approximation for U, would be 

u,=(l-b-c)u,+bu,+cu,, (22) 

where points 5 and 6 are centers of line segments II- NW 
and W - SW, respectively, as shown in Fig. 1 b, and 

h= [-Ax,, AY,, + Aye, AxmllJ 

c = [Ax,, AY,, -Aye, Ax,,llJ 

J=Ax,,AYP,-AY,,AxP,, 

Similar expressions for u,, u,, . . . can easily be derived. 
According to the authors’ numerical experiments 

and local linearized spectral approximation, the stability 
behavior of Eq. (22) is slightly better than the classical 
second-order upwind scheme. After applying the fundamen- 
tal lemma, the leading error terms are composed of 
u ‘.~, u,, , . . . . Thus the scheme is at least first-order accurate, 
avoiding the consistency problem. For the scheme to be 
second-order accurate, either the coefftcients of all the 
second-order derivatives must be of O(A’) or the grid 
distribution must satisfy either Eq. (16) or Eq. (18). Since 
the grid size is finite, artificial viscosity is still present. To 

eliminate dissipation due to grid nonuniformity, strictly 
third-order approximations for u,, . . . (which results in a 
strictly second-order approximation for the convective 
term) are necessary as indicated in Pike’s one-dimensional 
finite difference study [ 161. 

2.5. Error Analysis of the Diffusive 
Term of the Model Equation 

So far, the expression of the diffusive term (the Laplace 
operator) for the finite volume method has not been clearly 
studied elsewhere. In this section, a systematic approach 
will be demonstrated to explain the geometrical interpreta- 
tion of the metric coefficients. Note that the vector V in 
Eq. (5) is replaced by V& and the lemma is applied 
accordingly. 

For convenience, consider the discretized form of the 
boundary i?! (Fig. 1 b) or S, below, 

+ O(Ir1213h (23) 

where the ri2 term is a vector measured from point “1” to 
point “2”, and lr12 I = Jw. Again, the error of the 
approximation of the line integral includes: (1) the omitted 
term O(lr,,13)and (2) theerror ofevaluating [4,],, [d,lr. 
The following subsections will demonstrate how to interpret 
the latter error. 

2.5.1. The Case with Known 4’s at Points I, 2, P, E, . . . 

Consider the ceil center formulation in which the variable 
Q’s at the four points 1,2, P, E are known. The Taylor series 
expansions of points 1,2, P, E are rewritten to be equations 
of (d2 - 4i) and (dE- bp) so that unique solutions of [dX], 
and [&I e can be obtained. Consequently, Eq. (23) becomes 

s V~.~S=(~,-~,)CAY,,AY,,+A~,,A~,,I/J, 
& 

+(h-d,)C-AxmAx,2 

- AY,.E AydJo + TEl, (24a) 

where Jo corresponds to the Jacobian of the finite difference 
method. Geometrically, J, is equal to the area of a 
parallelogram with each side passing through points 1,2, P, 
E and parallel to line n or PE. This formula shows that the 
Jacobian of a finite volume method is not just an interpola- 
tion from J, and J, but rather a quantity defined at the sur- 
face. TEl of Eq. (24a) denotes the error of approximation, 
which is 



TRUNCATION ERROR ANALYSIS 71 

Q, = WC,- e4 -AY,* AY,, -Ax,* ~x,,)llJ, 

A, = (Ax,, AY,,- Ax,, AY,~) 
x ( -AYU AY,, -Ax,, AxdIIJo 

0, = (Ay;, - Ay;,) 

x(-AY,~AY,,-Ax,,~x,,)I/J,. 

Wb) 

Equation (24a) can be interpreted by geometrical relations 
as 

s Vd.dS= Ir121 Sr (iE-/p)r,,‘::,~.k 
- lrPEl cos 0 +(h-41) r,,xr,2.k +TEl. (25) I 

The corresponding nodal locations and the angle definitions 
are shown in Fig. 2. The Ir,, 1 term outside the bracket [ ] 
of the RHS denotes the magnitude of the control surface, 
while those lr,, 1 terms within the bracket [ ] are due to the 
interpolation. The first term within the bracket [ ] can be 
interpreted as the property variation across the cell surface 
while the second term is the result from the non- 
orthogonality of the grid system. From Fig. 2, it can be 
calculated that Q, ,4, 0 take smaller values in orthogonal 
grid systems (0 = 90”), leading to a smaller truncation error 
whenever the grid is smooth enough. -- 

After writing the integrations over line segments 23, 34, 
and a and employing the fundamental lemma, errors of the 

FIG. 2. The node locations and the angle definitions. 

approximation to the RHS of Eq. (13) can be determined. 
These errors will induce a consistent problem, except when 
a two-dimensional grid system has the character 

[Q, + a,, + sz,, + a,] - O(A 1.5) 

[A,, + A,, + A,. + A,] - O(A’.5) (26) 

t-0, + o,, + o,,, + O,] - O(A ‘.S), 

where SC?,, Q,., Q,, A,,, A,., A,, O,, O,., and @,s are defined 
on surfaces S,, S,., and S,, respectively, their forms being 
similar to Q,, A,, and 0, in Eq. (24b). 

If Turkel’s quasi-uniformity conditions (Eq. (16)) are 
employed, it is easy to show that the criteria of Eq. (26) are 
fulfilled. On the other hand, analysis on the computational 
domain for Eq. (26) shows that this equation is equivalent 
to Eq. (19). For this scheme to be second-order accurate, 
the term, c?(A’.~), in Eq. (26) should be changed to O(A2). 
This property is consistent with one-dimensional analyses 
[ 8, 11, 13, 16, 171. Moreover, additional constraints require 
either that the coefficients of all the third-order derivatives 
(d,,,)P.. . are of O(A2) or that Eq. (16) is satisfied. 

Whether or not Eq. (26) is satisfied, these terms will play 
a certain role in creating additional artificial viscosity 
whenever the grid size is finite. In other words, this dissipa- 
tion cannot be avoided if one employs the finite volume 
method on a general grid system. 

2.5.2. The Case with Interpolation Errors at Points 1, 2, 3, 4 

In the previous subsection it was assumed that the expres- 
sions 4, and #2 were known. For a ceil center formulation, 
however, we only know variables at the nodal points P, E, 
N, and NE. Interpolation of (4 of nodal points 1, 2 from the 
neinhbouring nodes should account for the interpolation 
err&. First, consider the convenient approximations [ 11, 

& = (4NE + 4N + 4P + 4,)/4 

6 = (4.w + 4s + 4P + 4,)/4> 
(27 

where & and & are approximate values for d2 and 4, 
Using the Taylor expansion around the nodes 2, 1 respec- 
tively for #2, dl, dN, and so on, we obtain 

&4=42-h +k~(d,),-dx, .(41-), 
f6Y2.(4,),-6Y, 44.A + ...? (28) 

where 6x, = (x,,+x,+x,+x,)/~-xi, 6y, = (y,,+ y,+ 
Y, + ~,)/4 - Y 1 3 etc. 

By substituting Eq. (28) into Eq. (24) and employing the 
fundamental lemma, it follows that 
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+ (4x1~ CC -Ax PE Ax,2 - AYP, AY,,) 

x(6x,-6x,)/J,+ ...I 

+ (4,)~ CC -Ax,, AXI, - AY,, AY,,) 

x(~Y2-~YlI)lJcl+ ...I 
+ (terms involving Qe, . ..) + . . . (29) 

Consequently, the classical arithmetic average scheme of 
Eq. (27) will introduce significantly large false fluxes, unless 
the following criteria are satisfied: 

(--AX,, Ax,, - Ay,, Ay,,)(bx, - 6x,)/J,, . . . - U(A1.5) 

(--AX,, Ax,,-AY,EAY,,)(~Y,-~Y,)/Jo, ... -C’(A1.5). 

(30) 

Other consistency conditions are represented by Eq. (26). 
Recall that the term ( -Ax,, Ax,, - Ay,, Ay,,) reflects the 
orthogonality. For an orthogonal grid system, the delicien- 
ties of false fluxes are trivial, but the additional numerical 
diffusion still depends on 6x2 - 6x,, . . . . In Section 3, two 
test problems on a generalized grid system will show that 
these false fluxes reduce the accuracy of Laplace’s equation 
solutions. -- 

Although the terms dl, & (Eq. (27)), are relatively sim- 
ple, they introduce an additional error. Fortunately, proper 
interpolations can avoid the constraints of Eq. (30). One 
such choice involves interpolating point “1” from points P, 
E, S, SE, etc. This leads to many possible froms of inter- 
polation with second-order accuracy. After applying the 
fundamental lemma, the expressions of the final error form 
of these interpolation schemes can easily be determined. 
Surprisingly enough, their consistency conditions are com- 
parable to those found in Eq. (26), Eq. (16), and Eq. (19), 
although artificial viscosity still plays an important role in 
error determination. In addition to interpolation schemes, 
the next section also introduces a non-interpolating 
method. 

2.5.3. A Proposed Finite Volume Formulation for the 
Diffusive Term 

In order to avoid the interpolation method for finding 4,) 
d2, points A, B are used instead of points 1,2. As shown in 
Fig. 3, points A and B are located at the arithmetic centers 
of four adjacent nodes N, NE, P, E and S, SE, P, E, respec- 
tively. The first-order derivatives (d,), and (d,), are now 

FIG. 3. The locations of A and B on the physical domain. 

approximated from nodes P, E, A, and B. By applying the 
Taylor series expansion, their expressions become 

dA = (4NE i- 4~ + ip + dE)/4 + second-order error 

4B = (tiSE + ds + dp + 4E)/4 + second-order error 
(311 

and 6x and 6y of Eq. (28) will be zero. The discretized 
diffusive term becomes 

s V4 . dS = (dE- dp)[AyA, Ay,l+ AXA, Ax,l]/J, se 
+ (4~ - 4dC --AXE, Ax,, 

- AYE, AYX l/J, + 1x2 

J, = AY AB AXEP - AY EP AX AB (32) 

and the problem of false fluxes disappears. The Jacobian J, 
is interpreted as the area of the parallelogram with each side 
passing through points P, E, A, B and parallel to line AB or 
PE. Although this type of finite volume method slightly 
deviates from the finite difference method, the deviation 
becomes trivial whenever the grid system is uniform. The 
minor extra computing time for Eq. (32) is due to the deter- 
mination of coordinates at four average points xA, y,, etc. 

The form of TE2 is similar to that of TEl. If Turkel’s 
quasi-uniformity condition is substituted, the consistency 
problem can be avoided. However, should the analysis on 
the computational domain be performed for TE2, the 
consistency criteria is now represented by Eq. (18) rather 
than by Eq. (19). 

If a cell vertex formulation is employed, the problem of 
interpolating point values at 1,2,3,4 turns out to be just the 
interpolation of point values at centroids P, E, . . . Its 
accuracy is comparable to the present scheme but is better 
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under nonuniform grid conditions than the classical cell 
center scheme which makes use of Eq. (27) in its derivation. 
If, however, the grid system remains close to uniformity, it 
can be shown [23] that the difference between the cell 
vertex formulation and the classical cell center formulation 
is not significant. 

Unfortunately, both the cell vertex and cell center for- 
mulation methods present specific problems in their use and 
it is difficult to determine which is more suited to solving the 
diffusive term. For instance, in order to cancel the error 
associated in unsteady computation of the cell vertex 
formulation, some additional computations must be made 
[20]. And in the case of the cell center formulation, either 
A, B must be determined or the interpolation of 1, 2, 3, 4 
undertaken. 

If one wants to eliminate the consistency problem com- 
pletely, it is obvious that higher order approximations for 
($,), and (c$,), are necessary [36, 371. For example, to 
obtain second-order accurate approximations for 4, and 
4~,., six independent equations formed by neighbouring 
nodal points are needed to evaluate (c$), and the live dif- 
ferent derivatives at point “e”. In other words, one must 
invert a 6 x 6 matrix. For a nonoverlapping quadrilateral 
grid system, the coefficient matrix is non-singular [37] and 
the derivatives can be solved by techniques of matrix inver- 
sion such as Gaussian elimination, etc. Unfortunately, the 
matrix inversion will significantly increase the required 
computer resource, which destroys the fast and simple 
nature of finite volume methods. Moreover, when we con- 
sider the error sources of discretization for the convective 
term and the interpolations for nodes d,, d,,, #,&,, and d,Y, we 
should also take into consideration the overall order of 
accuracy. Therefore, in order to avoid consistency 
problems, one has to simultaneously employ a high order 
interpolation formula and a high order integration formula 
for both the convective and the diffusive terms. 

3. APPLICATION TO THE LAPLACE EQUATION 

The Laplace equation with Dirichlet boundary on the 
unit square and the unit circle, as shown in Figs. 4 and 5, 
respectively, is studied. The boundary conditions are chosen 
so that exact solutions exist. The test problem for convective 
and diffusive terms will be demonstrated in a forthcoming 
manuscript concerning the SIMPLER type algorithm on a 
staggered grid system [35]. A proposed scheme for diffusive 
terms as well as four additional schemes are: 

(1) the classical finite difference method by coordinate 
transformation [38]. 

(2) the classical finite volume method [l, 391 of 
Eq. (24a) with the interpolation of Eq. (27). 

(3) a modification of scheme (2). The metric coefficients 
are first evaluated by central differencing at grid nodes P, E, 

4=0 

I$=0 

dJ,, + ovu = 0 

FIG. 4. The constant property contours of the unit square problem. 

W, N, S, . . . and then interpolated to give the desired metric 
coefficients at points corresponding to e, n, W, . . . [40]. 

(4) the finite volume method of Eq. (24a) with the 
interpolation algorithm [41] which extends the existing 
methods for regular grids to grids consisting of non-equidis- 
tant convex four-point meshes. 

(5) the finite volume method of Eq. (32) with the inter- 
polation of Eq. (31). This is the proposed method. 

All schemes are performed on 21 x 21 grid systems on the 
VAX-785 with double precision programming. The con- 
vergence criterion is set to be less than 1 x lo- ‘* in each 
case. 

For comparison, several grid systems are employed. The 

FIG. 5. The constant property contours of the unit circle problem. 
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FIG. 6. Grid A generated by the multiple one-dimensional adaptive 
grid scheme. 

FIG. 7. Grid B generated by the modified multiple one-dimensional 
adaptive grid scheme. 

FIG. 8. Grid C generated by Thomas and MiddlecotTs method. 

FIG. 9. Grid D generated by the multiple one-dimensional adaptive 
grid scheme. 

result of employing the single line multiple one-dimensional 
adaptive grid scheme of Shyy [ 38,421 along the [-direction 
first and then along the v-direction is shown in Fig. 6. The 
initial data for grid adaption is solved on a uniform grid 
system. The grid adaption along a grid line q = q, uses the 
identity 

(33) 

where “9’ is the arc length along a known grid line, and the 
parameter “A” is taken to be “20.” The grid distortion is 
more serious near the left and right boundaries. The adap- 
tive grid technique [38] is employed to smooth out the grid 
distortion (see Fig. 7). It makes use of Vd to replace A#As 
and averages over three grid lines by Simpson’s rule, 

TABLE I 

Comparison of Numerical Errors on Grid A for a Unit Square 

Scheme i,,,,, 

1 0.94140174 0.94822249 1.98925569E-2 l.O8832162E-2 
2 0.94729400 0.95053805 7,65071752E-3 3.29574456E-3 
3 0.94729400 0.94966534 2,01228672E-2 4.57252834E-3 
4 0.94729400 No solution No solution No solution 
5 0.94729400 0.95041010 7,02103965E-3 2.60045986E-3 

Note. 4 is the numerical approximation; 4 is the exact solution; 
E max =max li-il/dmax; E,,=Cl/(ZxJ)~,~,(~-9)*1”‘/~,,,. 
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TABLE II TABLE IV 

Comparison of Numerical Errors on Grid B for a Unit Square Comparison of Numerical Errors on Grid D for a Unit Circle 

Scheme d,,, i tnax E max E rmb Scheme d,,,,, 

1 0.85070941 0.85374261 1.301988073E-2 9.58781016E-4 
2 0.92094750 0.92267935 l.O1903404E-2 1,98882378E-3 
3 0.92094750 0.92194976 1.58647704E-2 2.87263707E-3 
4 0.92094750 0.92242128 4.38156269E-3 1.21964658E-3 
5 0.92094750 0.92243125 6.41224183E-3 1.52879073E-3 

1 0.94141127 0.93130423 2.10540432E-2 6.87198556E-3 
2 0.98350507 0.98468635 6.61281701E-3 1.76685491 E-3 
3 0.98350507 0.98502009 1,10147813E-2 2.68308239E-3 
4 0.98350507 0.98458861 2.71664869E-3 8.46870876E-4 
5 0.98350507 0.98428891 2.17046141E-3 6.64613902E-4 

where the Vd,,, terms are evaluated by a central difference 
scheme on the computational domain, and A= 20. The grid 
distribution of a unit circle generated by Thomas and 
Middlecoffs scheme [43] is shown in Fig. 8. The resultant 
solution was used to generate the relatively poorer adaptive 
grid system of Fig. 9 with respect to that of Fig. 8. 

The resultant solution errors of the grid system of Fig. 6 
are shown in Table I. In scheme 4, the results of “no solu- 
tion” can be explained due to the fact that grid distortion 
has shifted the average position of point 2. Point 2 of Fig. 1 b 
is now located outside the quadrilateral region with vertices 
P, E, NE, and N. In the case of the proposed model (scheme 
5), minimum error is achieved while that of the classical 
model (scheme 1) exhibits maximum error. 

The resultant solution errors of the smooth grid system of 
Fig. 7 are shown in Table II. In comparison to Table I, the 
errors of all the schemes are reduced. Furthermore, it is 
interesting to note that while the accuracy of schemes 14 
are relatively sensitive to grid distortion, the proposed 
model (scheme 5) is not. 

the worst one of the series. Under these distorted grid condi- 
tions, the direct average model (scheme 2) and the modified 
finite volume model (scheme 3) fair a little better in com- 
parison to scheme 1, but by far the two best schemes are the 
interpolation model (scheme 4) and the proposed model 
(scheme 5). Unfortunately, the interpolation model some- 
times has “no solution” as in the case in Table 1. 

4. CONCLUSIONS 

A fundamental error relation of discretizing the line 
integral part of the Gauss divergence theorem is sum- 
marized into a lemma. Based on this lemma and on a 
generalized grid system, the classical first- and second-order 
upwind schemes of the finite volume method for convective 
terms are proved to be at most first order on the physical 
domain, provided that the grid distribution is subject to 
certain constraints. A proposed scheme is found to be of 
first-order accuracy. 

The resultant solution errors of the smooth grid system of 
Fig. 8 are shown in Table III, while Table IV lists those 
calculations obtained from the slightly skewed grid of Fig. 9. 
In this particular case, the accuracy of schemes 1-3 are 
relatively sensitive to grid distortion, whereas the fourth and 
fifth schemes are not. 

In summary, it was shown that all the schemes outlined 
can produce good results, but only if those conditions that 
generate smooth grid systems are met. However, when the 
grids become distorted, the classical finite difference model 
(scheme 1) deteriorates in terms of accuracy and becomes 

TABLE III 

The finite volume method for the diffusive term is 
systematically studied. It is found that the interpolation 
concept plays a key role and that the order of accuracy 
depends on the interpolation process. The classical 
averaging method for diffusive terms introduces false fluxes 
and can be adjusted either by proper interpolations or by a 
proposed modification. All the discussed schemes are con- 
sistent with the Laplace operator provided the grid distribu- 
tion is subject to certain constraints. Five schemes, 
including the proposed scheme for the diffusive term, are 
examined for two test cases of the Laplace equation. Among 
the studied schemes, the proposed scheme for the diffusive 
term achieves the highest accuracy as well as being less 
sensitive to moderate grid distortion. 

Comparison of Numerical Errors on Grid C for a Unit Circle 

Scheme 4,,, i,*, rnax E E rms 

1 0.95453782 0.95605050 1.6487371OE-3 6.33302504E-4 
2 0.98690919 0.98900893 2,0999445OE-3 6.08649825E-4 
3 0.98690919 0.98804812 2.75684992E-3 l.l9452859E-3 
4 0.98690919 0.98832047 1.41142622E-3 .5.20898807E-4 
5 0.98690919 0.98829406 1.38500990E-3 5.59372964E-4 
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